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Abstract
Background and objectives: Terahertz (THz) radiation is increasingly explored for biomedical applications, however, its non-
thermal effects on cellular metabolism and regulatory networks remain insufficiently characterized. This study aimed to in-
vestigate how 2.3 THz radiation affects metabolic pathways and membrane-associated signaling in human melanoma cells.

Methods: SK-MEL-28 melanoma cells were exposed to 2.3 THz radiation for 45 min using the 1st Novosibirsk free-electron 
laser. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan blue assays. 
Metabolic alterations were detected by targeted metabolomics using liquid chromatography–tandem mass spectrometry. Gene 
network analysis was performed using the ANDSystem platform to reconstruct gene and protein interaction networks linking 
altered metabolites to membrane receptors, lipid raft proteins, and signaling pathways. Overrepresentation analysis of biologi-
cal processes was applied to identify enriched functional categories.

Results: THz exposure did not affect cell viability but induced significant alterations in purine metabolism, pantothenate/CoA 
biosynthesis, and the pentose phosphate pathway. Network analysis revealed that these metabolic changes were associated 
with membrane raft reorganization and receptor-mediated signaling involving epidermal growth factor receptor and G-protein 
subunits. Additional effects were observed in pathways related to chromatin organization and post-translational regulation.

Conclusions: THz radiation induces coordinated remodeling of metabolic and regulatory networks in melanoma cells without 
cytotoxicity. These findings highlight the role of membrane-associated signaling in mediating THz-induced cellular responses 
and provide insight into potential biomedical applications of THz technologies.
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Introduction
Terahertz (THz) radiation refers to electromagnetic waves with 
frequencies ranging from 0.1 to 10 THz (∼3 mm to 100 µm), lying 
between the infrared and microwave regions of the electromagnet-
ic spectrum.1 Due to its expanding applications in pharmaceutical 
technologies,2 civil security systems,3 and biomedical research,4 
interest in its biological effects has grown substantially. THz ra-
diation can exert both thermal and non-thermal effects depending 
on power and exposure conditions.5–7 Under non-thermal condi-
tions, pulsed THz radiation interacts with biomolecules without 
measurable heating, suggesting specific molecular and structural 
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responses.8 Thermal effects are primarily associated with high-
power millimeter-wave sources, whereas pulsed THz exposures 
produce negligible heating.9,10 Non-thermal mechanisms may 
involve linear or nonlinear resonances at the molecular level; for 
instance, local disruption of hydrogen bonds in DNA may lead to 
altered gene expression.11

On the one hand, most of the commonly used THz radiation 
intensities are not harmful to cells and do not reduce their viability. 
This has been confirmed in a study on human dermal fibroblasts, 
where no signs of apoptosis or oxidative stress were observed.12 
On the other hand, there are reports of THz-induced adipogenic 
differentiation of mesenchymal stem cells, as well as indications 
that THz radiation may influence gene transcription.13 In addition, 
a research group led by Dr. Peltek has been actively studying the 
effects of THz radiation on a range of biological objects, includ-
ing E. coli,14,15 G. icigianus,16 and human embryonic stem cells,17 
under exposure to a frequency of 2.3 THz.

Contemporary studies indicate that cell membranes are a pri-
mary target of THz radiation. In HeLa cells, exposure to 0.10–0.29 
THz increased lateral lipid diffusion and induced an order–disorder 
transition in the bilayer under non-thermal conditions.18 In HT22 
neuronal cells, continuous-wave 0.1 THz irradiation enhanced 
membrane permeability and facilitated transmembrane transport 
of small molecules.19 These findings are consistent with the un-
derlying physics: phospholipid bilayers and their hydration shells 
support collective motions in the THz band, and THz spectroscopy 
detects a long-range hydration layer extending approximately four 
to five water layers beyond the membrane, providing a direct phys-
ical coupling between THz fields and the lipid–protein matrix.20 
Similar effects have been demonstrated under exposure to radia-
tion with a wavelength of 130 µm, which may induce reversible 
impairments in the barrier properties of neuronal membranes.21 
Previously, we reported alterations in the metabolic profile after 
a 45-min exposure of SK-MEL-28 tumor cells to THz radiation, 
with no signs of cytotoxicity but with metabolomic and bioinfor-
matic evidence of changes in mitochondrial membrane rafts.22 
These observations support the concept that membranes and their 
lipid rafts might act as primary sensors of THz radiation, mediating 
subsequent metabolic and regulatory responses.

Metabolomics is a field of bioanalytical chemistry aimed at 
studying biological systems, which enables comprehensive moni-
toring of metabolic pathways and their responses to various stimu-
li.23 It enables the identification of pathway-level changes and the 
discovery of adaptive mechanisms underlying cellular responses. 
By integrating metabolomic data with gene network reconstruc-
tion, it is possible to connect metabolite-level changes to regula-
tory processes at the protein and signaling levels.24 The ANDSys-
tem software platform is an automated bioinformatics tool that 
reconstructs molecular interaction networks from biomedical da-
tabases and scientific literature using ontology-based knowledge 
extraction.25–27 This approach has been successfully applied in 
various studies to identify molecular mechanisms of pathological 
processes and to interpret omics data.28–30 In our previous study on 
THz-irradiated melanoma cells, ANDSystem revealed strong con-
nectivity between mitochondrial membrane proteins and enzymes 
involved in purine metabolism.22

The aim of the present study was to analyze high-performance 
liquid chromatography (HPLC)–tandem mass spectrometry (MS/
MS) metabolomic data of SK-MEL-28 melanoma cells exposed 
to 2.3 THz radiation for 45 min, identify key metabolic pathways 
affected, and determine the role of membrane rafts in regulating 
these THz-induced metabolic and signaling changes.

Materials and methods

Cell culture
Cells (SK-MEL-28) were seeded two days before irradiation. Cells 
were cultured in T-25 flasks (TPP, Switzerland) (n = 5) in DMEM/
F12 (1:1) medium supplemented with L-glutamine (Biolot, Rus-
sia), 10% fetal bovine serum (Hyclone, New Zealand), and gen-
tamicin at a concentration of 50 µg/mL (Dalchimpharm, Russia). 
Incubation was carried out at 37°C in a humidified atmosphere 
containing 5% CO2. Cells were seeded at a density of 4.0 × 104 
cells/cm2 (1 × 106 per flask) and reached approximately 1.2–1.6 
× 105 cells/cm2 (3–4 × 106 per flask) by the time of irradiation, 
in 5 mL of culture medium to ensure uniform exposure across the 
monolayer surface (90–93%).

Cell viability and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT) assays
Cell viability was assessed 72 h after THz exposure. Cells from 
both control and irradiated groups were detached from the sub-
strate using a trypsin–versene solution (1:1) (Biolot, Russia), af-
ter which 0.4% trypan blue solution (Applichem, Germany) was 
added to the resulting cell suspension. The numbers of viable and 
necrotic cells were determined using a Countess automated cell 
counter (Invitrogen, USA) in accordance with the manufacturer’s 
instructions. Cell survival 72 h after irradiation was assessed using 
the MTT assay. Cells were seeded into 96-well plates at a density 
of 1 × 104 cells per well, with five replicates for each experimen-
tal point. After 72 h, 20 µL of the phenazine methosulfate-based 
reagent (Cell Titer 96® AQueous One Solution, Promega, USA) 
was added to 100 µL of culture medium in each well. Incubation 
was carried out under standard conditions for 4 h. Optical density 
was measured at 490 nm using a Multiskan SkyHigh Microplate 
Spectrophotometer (Thermo Fisher, USA).

THz-irradiation
THz irradiation was carried out at the Novosibirsk Free Electron 
Laser (NovoFEL) facility of the Budker Institute of Nuclear Phys-
ics, SB RAS. THz radiation was generated at a wavelength of 130 
µm (2.3 THz). The power density of the radiation was 0.056 W/
cm2. The total irradiation time for each sample was 45 min. The 
irradiation scheme and methodology are shown in Figure 1. All 
parameters of the THz laser are outlined in Table 1.31

Sample preparation for HPLC–MS/MS analysis
Metabolomic analysis was carried out using five independent bio-
logical replicates (n = 5), each analyzed in two technical replicates 
to ensure reproducibility. Prior to sample preparation, cells were 
collected as a suspension, and their concentration was determined 
using a Countess automated cell counter (Invitrogen). Based on 
the obtained data, a suspension volume corresponding to 1 × 
106 cells was transferred into 1.5 mL tubes. Centrifugation was 
performed at 1,000 g for 5 min. The supernatant was removed, 
and the cell pellet was resuspended in 1 mL phosphate-buffered 
saline. After a second centrifugation under the same conditions, 
phosphate-buffered saline was removed, and 100 µL of Milli-
Q water was added to the pellet. The samples were thoroughly 
mixed until complete resuspension, frozen, and stored at −80°C 
until analysis. Before analysis, the samples were thawed at room 
temperature and normalized to contain 1 × 106 cells per 100 µL 
of Milli-Q water. To disrupt membrane structures, two cycles of 
freezing (−70°C) and thawing at room temperature were per-
formed, followed by sonication using a 25 kHz ultrasonic system 
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(model Elma Sonic S30H, Germany) at room temperature for 5 
min. Then, 400 µL of pre-cooled methanol/acetonitrile mixture 
(1:1, v/v) was added to the resulting lysate. Extraction was carried 
out on a thermoshaker at 22°C, 900 rpm for 20 min, followed by 
centrifugation at 4°C and 16,000 g for 15 min. The obtained su-
pernatant was transferred into vials and subjected to HPLC–MS/
MS analysis. Each sample was analyzed in two analytical repli-
cates. The detailed extraction and HPLC–MS/MS protocol was 
previously described in our publication.32

HPLC
Chromatographic separation was performed on an LC-20AD 
Prominence system (Shimadzu, Kyoto, Japan) equipped with an 
SIL-20AC autosampler (Shimadzu, Japan) thermostated at 10°C. 
Eluent A consisted of 5% acetonitrile in an aqueous solution of 
20 mM (NH4)2CO3, adjusted to pH 9.8 with aqueous ammonia. 
Eluent B was 100% acetonitrile. Each sample was analyzed twice, 
namely in hydrophilic interaction liquid chromatography and re-
versed-phase chromatography modes. The hydrophilic interaction 
liquid chromatography gradient was as follows: 0 min – 98% B, 
2 min – 98% B, 6 min – 0% B, and 10 min – 0% B. The column 
was then re-equilibrated for 4 min. The reversed-phase chroma-
tography gradient was as follows: 0 min – 0% B, 1 min – 0% B, 

6 min – 98% B, and 16 min – 98% B. The column was then re-
equilibrated for 3 min. The flow rate for both methods was 300 
µL/min. The injection volume was 10 µL. Separations in both 
chromatographic modes were conducted using a monolithic col-
umn based on 1-vinyl-1,2,4-triazole, 2 × 60 mm. The monolithic 
column material was synthesized according to the procedure de-
scribed in reference33: copolymerization was carried out in a glass 
tube with an internal diameter of 2 mm using a monomer mixture 
of styrene/divinylbenzene/1-vinyl-1,2,4-triazole taken at a volume 
ratio of 10:50:40, respectively.

Mass spectrometry
Metabolite detection was performed in multiple reaction monitor-
ing mode in both positive and negative ion modes using an API 
6500 QTRAP mass spectrometer (AB SCIEX, USA) equipped 
with an electrospray ionization source. The main mass spectro-
metric parameters were as follows: ion source voltage 5,500 V 
for positive and −4,500 V for negative ionization; desolvation gas 
temperature, 475°C; collision gas, “high”; nebulizer gas, desolva-
tion gas, and curtain gas pressures, 33, 33, and 30 psi, respectively. 
Declustering potential was ±91 V, entrance potential ±10 V, and 
collision cell exit potential ±9 V. The multiple reaction monitoring 
dwell time was 3 ms. Instrument control and data acquisition were 
carried out using Analyst 1.6.3 software (AB SCIEX). Precursor-
to-fragment ion transitions, metabolite names, fragmentation 
times, and corresponding collision energies were adapted from 
reference.34

Gene network reconstruction
To reconstruct the gene networks, regulatory pathways were con-
sidered between significantly altered metabolites and two types of 
their regulators, human cellular receptors and lipid raft proteins. 
Human enzymes involved in the transformation of identified me-
tabolites were retrieved from the KEGG Pathway database (https://
www.genome.jp/kegg/pathway.html) by querying their KEGG 
compound identifiers to obtain associated metabolic pathways.35 
Only human pathways (prefix “hsa”) were considered. The analy-

Table 1.  The main parameters of the 1st Novosibirsk Free Electron Laser31

Parameter Value

Frequency, THz; wavelength, µm 3.3–0.75 (90–400)

Pulse repetition frequency, MHz 5.64

Pulse duration, ps 100

Average power, kW 0.5

Peak power, MW 1

Spectrum width, % <1%

kW, kilowatts; MHz, megahertz; MW, megawatts; Ps, picoseconds; THz, terahertz.

Fig. 1. Scheme of the cell irradiation setup at the Novosibirsk Free Electron Laser (Budker Institute of Nuclear Physics, SB RAS). Terahertz irradiation was 
performed at a wavelength of 130 µm. Each experiment was conducted using five biological replicates (n = 5).
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sis included enzymes directly catalyzing reactions involving the 
target metabolite, as well as those involved in one upstream and 
one downstream reaction step. KEGG compound identifiers of 
identified metabolites were extracted from the HMDB database 
(https://hmdb.ca/).36 The list of cellular receptors was obtained 
from the RaftProt database (https://raftprot.org/).37 The list of 
cellular receptors was extracted from the CellTalkDB database 
(http://tcm.zju.edu.cn/celltalkdb/browser.php?list=receptors).38 
The ANDSystem cognitive platform with its graphical interface 
ANDVisio was used to reconstruct and analyze gene networks. Us-
ing the “Pathway Master” module of the ANDVisio program,25–27 
the regulatory molecular–genetic pathways were constructed. Uni-
Prot identifiers of cellular receptors, raft proteins, and enzymes 
were explicitly submitted to the “Pathway Master” query. Types 
of molecular interactions, including protein–protein interactions, 
regulation of protein activity, degradation, transport, post-transla-
tional modifications, cleavage, and catalytic reactions, were ticked 
as parameters in the interaction filter. The object “human proteins” 
for templates 3 and 4 was passed implicitly to the query. ANDVi-
sio automatically extracted interactions between objects from the 
ANDSystem knowledgebase according to the templates in Table 
2. The templates describe such relationships between proteins as 
protein–protein interactions, regulation of activity, degradation, 
transport, post-translational modifications, proteolysis, and cata-
lytic reactions.

Gene network analysis
For templates No. 1 and No. 2, manual verification of connec-
tions was performed to exclude errors arising from automated text 
analysis by the ANDSystem. For templates No. 3 and No. 4, no 
additional filtering steps were applied, as these templates yielded 
only the most highly connected proteins. Using ANDVisio, sta-
tistical analysis of the gene network was conducted, in which the 
topological properties of the network were examined based on the 
degree centrality of graph vertices. Degree centrality is defined as 
the ratio of the number of connections of a given vertex to the total 
number of other vertices in the network. This measure makes it 
possible to assess how strongly a particular vertex is connected to 
the rest of the network.

A Python 3.11 script incorporating Pandas 2.2.3 and Matplotlib 
3.9 was used to calculate the number of regulatory connections 
for each vertex in each of the regulatory pathway templates and 
visualize the histograms.

The overrepresentation analysis of Gene Ontology biological 
processes within the gene network was conducted using the DA-
VID web tool (https://david.ncifcrf.gov/tools.jsp).39 UniProt IDs 
of the gene network participants were uploaded to the DAVID 

Functional Annotation Tool. The analysis was conducted with 
Benjamini-Hochberg multiple comparison correction and a signifi-
cance threshold of 0.05. The data on ages of the gene network par-
ticipants and overrepresented Gene Ontology biological processes 
were obtained from the GenOrigin Database (http://genorigin.
chenzxlab.cn/).40 The Age Coefficient for each overrepresented 
biological process (OBP) was calculated as the ratio of the average 
age of the gene network participants within the OBP to the average 
age of all genes annotated in the OBP.

Statistical analysis
Statistical tests were conducted with Python 3.11 using its SciPy 
1.15.0 stats module. Metabolome coverage of the analytical ap-
proach was assessed using Student’s t-test. Significantly altered 
metabolomic profiles were revealed through analysis of the experi-
mental data using the Mann–Whitney U test with multiple-testing 
correction (Benjamini–Hochberg procedure).

Overrepresentation analysis of metabolic processes was con-
ducted using the MetaboAnalyst 6.0 web tool (https://www.me-
taboanalyst.ca/).41 For the participants of the reconstructed gene 
networks, statistically significant biological processes (adjusted 
P-value, or q-value < 0.05) were identified using the DAVID web 
tool (DAVID knowledgebase version: v2024q1).

Results

Cell viability and MTT assay
After 72 h, both groups were subjected to the MTT assay to as-
sess cell survival; the results are presented in Table 3. As shown 
in Table 3, the survival rate of the experimental group was high 
(87–89%) and comparable to that of the control.

Metabolomic screening by HPLC–MS/MS
A total of 40 statistically significant metabolites were identified 
whose levels changed in cells exposed to THz radiation (Table 4). 

Table 2.  Schemes of template regulatory molecular–genetic pathways between enzymes and cellular receptors, as well as lipid raft proteins of human 
cells

№ Template schematic description

1 Cellular receptors – protein–protein interactions → enzymes. Lipid rafts – protein–protein interactions → enzymes

2 Cellular receptors – regulation of activity/degradation/proteolysis/post-translational modifications (PTMs)/transport → enzymes. 
Lipid rafts – regulation of activity/degradation/proteolysis/PTMs/transport → enzymes

3 Cellular receptors – regulation of activity/degradation/proteolysis/PTMs/transport → human proteins – regulation of activity/
degradation/proteolysis/PTMs/transport → enzymes. Lipid rafts – regulation of activity/degradation/proteolysis/PTMs/transport 
→ human proteins – regulation of activity/degradation/proteolysis/PTMs/transport → enzymes

4 Cellular receptors – protein–protein interactions → human proteins – protein–protein interactions → enzymes. Lipid rafts – protein–
protein interactions → human proteins – protein–protein interactions → enzymes

Table 3.  Cell viability and MTT assay results for a 45-min exposure evalu-
ated 72 h post-irradiation

Group THz-45 IR-45 Control-45

Cell viability (%) 96.6 ± 1.2 93.4 ± 1.7 97.6 ± 0.8

MTT assay (OD) 87.1 ± 3.2 97.7 ± 5.7 100.0 ± 2.7

Data are presented as mean ± SE. Experimental groups: THz (terahertz irradiation), IR 
(infrared irradiation), and Control. Each group included five independent biological 
replicates (n = 5). MTT results are expressed as % of control. MTT, 3-(4,5-dimethylth-
iazol-2-yl)-2,5-diphenyltetrazolium bromide; OD, optical density; SE, standard error.
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The P-values for these metabolites are provided in Supplementary 
Table 1.

A list of metabolic pathways with varying levels of significance 
was obtained, from which the pathways with P-value < 0.05 were 
selected (Fig. 2, Table 5).

Reconstruction and analysis of gene networks
We hypothesized that THz radiation affected the supramolecular 
structures of lipid rafts as well as the signaling pathways originat-
ing from cellular receptors. Absorption of radiation by lipid rafts 
may have led to their enlargement or disintegration, as well as to 
changes in their localization on the membrane surface. An electro-

magnetic pulse acting on large receptor structures may have trig-
gered signaling pathways that were not normally activated under 
physiological conditions.

Within this hypothesis, we reconstructed gene networks regu-
lating enzymes through two types of regulators, cellular receptors 
and lipid raft proteins. Gene networks were constructed using the 
“Pathway Master” module of the ANDVisio program. Database 
queries were generated according to the templates presented in 
Table 1.

Gene networks of enzyme regulation by cellular receptors
Template 1, representing protein–protein interactions between 

Table 4.  Metabolites significantly altered by THz irradiation relative to the control group

Metabolites and changes in their levels

Increase (↑) Decrease (↓)

Purine metabolism Lipid metabolism Energy metabolism Purine and related metabolites

Uracil* Cardiolipin (18:2/18:2/18:2/22:6) Gluconic acid Adenosine monophosphate (AMP)*

7-methylguanine* Ceramide (d18:1/16:1 OH) Malic acid 1-methyladenine*

Deoxyinosine* Ceramide (d18:1/16:2) Glyceric acid Adenosine*

Inosine triphosphate (ITP)* Ceramide (d18:1/16:0) Adenylsuccinic acid Adenine*

Hypoxanthine* Ceramide (d18:1/18:1) Salicyluric acid Deoxyguanosine diphosphate (dGDP)*

Xanthine* Ceramide (d18:1/24:1) 1-methylnicotinamide Methylcysteine

7-methylguanosine* Phosphatidylcholine (16:0/20:4) N-acetylglucosamine 5-hydroxyindoleacetic acid (5-HIAA)

Guanine* Phosphatidylcholine (16:0/22:6) N-oleoylethanolamine Cytidine diphosphate (CDP)*

Cytosine* Phosphatidylcholine (38:5) Acadesine

Anthranilate Phosphatidylcholine (40:6) Histamine

Dephospho-CoA Aminoimidazole carboxamide 
ribonucleotide (AICAR)

*Purine metabolism-related metabolites are denoted by an asterisk. THz, terahertz.

Fig. 2. THz-induced alterations in metabolic pathways. (a) Overrepresented metabolic processes; (b) Purine metabolism pathway. AICAR, 5-aminoimida-
zole-4-carboxamide riboside; AMP, adenosine monophosphate; dGTP, deoxyguanosine triphosphate; ITP, inosine triphosphate; THz, Terahertz.
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enzymes and cellular receptors, was combined with Template 2, 
describing the regulation of enzyme biological functions (Fig. 3). 
The resulting gene network included 30 enzymes and 73 cellu-
lar receptors, with 118 protein–protein interaction links, 4 links 
of protein activity regulation, 2 catalytic links, and 2 proteolysis 
links.

In the gene network obtained by combining Templates 1 and 2, 
we highlighted enzymes catalyzing reactions involving guanine. 
According to the metabolomic analysis, guanine levels were in-
creased in the group of cells after THz irradiation. The gene net-
work reconstructed by combining Templates 1, 2, 3, and 4 was too 
extensive for visual representation; instead, a quantitative analysis 
of the regulatory influences from cell receptors to enzymes was 
performed for it (Fig. 4).

The histogram in Figure 4 illustrates the number of regulatory 
influences from cellular receptors to the 25 most highly regulated 
enzymes involved in the biosynthesis and degradation of signifi-
cant metabolites.

Gene network of enzyme function regulation by lipid raft pro-
teins
To construct the gene network of enzyme regulation by lipid raft 
proteins, Template 1 (representing protein–protein interactions) 
was combined with Template 2 (describing the regulation of en-
zyme biological functions by lipid raft proteins) (Fig. 5). The re-
sulting gene network included eightenzymes and nine lipid raft 
proteins, with eight protein–protein interaction links and three 
links of protein degradation regulation.

In the gene network in Figure 5, we identified key lipid raft 
proteins: ALBU, PL4, and PGK1. In addition, by combining Tem-
plates 1, 2, 3, and 4, a large gene network was constructed (not 
shown in the paper), for which a quantitative analysis of the regu-
latory influences from lipid rafts to the enzymes was performed. 
The histogram in Figure 6 illustrates the number of regulatory con-
nections from lipid raft proteins to the 25 most strongly regulated 
enzymes participating in the biosynthesis and degradation of key 
metabolites.

Overrepresentation analysis of biological processes
Overrepresentation analysis of biological processes was per-
formed using the DAVID web tool. For the gene network of en-
zyme regulation by cellular receptors, 577 OBPs were identified, 
among which we highlighted processes of chromatin organization 
regulation, G protein–related signaling pathways, and regulation 
of post-translational modifications. For the gene network of en-
zyme regulation by lipid rafts, 91 OBPs were identified, includ-

Fig. 3. Gene network of enzyme function regulation by cellular receptors. The enzymes of metabolite conversion are purple-framed spheres. Green-framed 
spheres represent cellular receptors.

Table 5.  Annotated metabolic pathways

Metabolic pathway The level of significance  
(p-value)

Purine metabolism 9.47 × 10−11

Pantothenate and CoA biosynthesis 2.65 × 10−2

Pentose phosphate pathway 3.45 × 10−2
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ing G protein–related signaling pathways, chromatin organization 
regulation, and protein post-translational modification processes.

Discussion
The lack of cytotoxicity under prolonged exposure is, in our view, 
an expected outcome, since Wilmink et al.42 demonstrated that dif-

ferences between irradiated groups at a frequency of 2.52 THz in 
human dermal fibroblast cells and the sham-control group were 
not statistically significant. It was also shown that exposure to THz 
radiation at three different frequencies (1.4 THz, 2.52 THz, 3.11 
THz) in human keratinocytes resulted in cell viability that did not 
differ significantly from the sham-control.43

Human neural progenitor cells were irradiated for 30 min with 

Fig. 4. Histogram of the distribution of regulatory influences on enzymes from cellular receptors. 

Fig. 5. Gene network of enzyme function regulation by lipid raft proteins. Purple-framed spheres represent the enzymes of metabolite conversion. Yellow-
framed spheres denote lipid raft proteins.
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pulsed THz radiation at 100 Hz. The study demonstrated no chang-
es in proliferative activity following THz exposure in cultures of 
both healthy and tumor cells (neuroblastoma).44

In another study, broadband THz radiation (0.05–1.2 THz) at 
powers of 30, 2, and 0.1 µW was shown to have no substantial 
effect on mitochondrial functional activity in either adherent cell 
cultures (human lung carcinoma A-549, human breast adenocarci-
noma BT-20, human colon carcinoma COLO 320 HSR), suspen-
sion cultures (NMC-1, human histiocytic leukemia U937, human 
promyelocytic leukemia HL-60), or primary cultures (thymocytes 
and splenocytes of CBA mice).45 Importantly, no disruption of the 
integrity of their bilipid surface membranes was observed.

These findings confirm that THz exposure does not induce 
significant cytotoxicity, thereby allowing investigation of subtle 
metabolic and signaling rearrangements without confounding ef-
fects of cell death.

One of the most distinct and pronounced metabolomic changes 
observed after 45 min of irradiation was a decrease in adenine lev-
els accompanied by an increase in hypoxanthine, inosine triphos-
phate, and deoxyinosine. Such shifts are characteristic of a transi-
tion from de novo synthesis to the purine salvage pathway,46 which 
is more energy-efficient and indicates an adaptive cellular response 
to THz radiation. In the reconstructed gene network, adenosine 
deaminase (ADA) forms five direct protein–protein interactions 
with membrane receptors; these interactions represent physical 
contacts, meaning that the enzyme is “recruited” to the plasma 
membrane and operates in close proximity to receptor complexes. 
Such localization is optimal for rapid processing of extracellular 
adenosine as well as the intracellular deoxyadenosine pool, con-
sistent with the metabolomic profile.

Dipeptidyl peptidase-4 (DPP4) is known as an anchoring pro-
tein on the surface of immune and tumor cells: binding increases 
the catalytic constant of ADA and stabilizes it on the membrane.47 
The most significant interaction was the DPP4–ADA pair. We hy-
pothesize that DPP4 activation under THz exposure accelerates 
adenine/adenosine deamination, producing hypoxanthine/inosine, 

thereby restarting the salvage cascade through hypoxanthine-gua-
nine phosphoribosyltransferase and inosine monophosphate dehy-
drogenase, shifting the cell to a more “cost-efficient” nucleotide 
resynthesis mode.48 Moreover, the DPP4–ADA complex is local-
ized in lipid rafts, where the co-receptor CD45 forms a signaling 
metaplex, leading even to raft domain redistribution.49 Thus, sec-
ondary utilization of purines reduces the cellular demand for aden-
osine triphosphate (ATP) and amino acids, which is consistent with 
both the absence of pronounced cytotoxicity and the increase in the 
AMP-activated protein kinase marker 5-aminoimidazole-4-car-
boxamide ribonucleotide. In addition, decreased adenosine and 
adenine levels prevent accumulation of S-adenosylhomocysteine, 
a methyltransferase inhibitor, thereby providing a “window” for 
cellular energy landscape reorganization without the risk of hyper-
methylation. At the same time, studies on the demethylating poten-
tial of THz radiation open the hypothesis that, in melanoma, such 
demethylation may have both pro- and anti-tumor effects depend-
ing on the specific loci. This rearrangement should therefore be 
interpreted as an adaptive and non-thermal response to THz stress.

Gene network analysis also revealed that the hexameric recep-
tor complement component 1 Q subcomponent-binding protein 
(C1QBP, also known as p32/HABP1) formed five direct protein–
protein interactions with enzymes of the tricarboxylic (TCA) acid 
cycle and oxidative catabolism—monoamine oxidase B (MAOM 
(MAO-B)), malate dehydrogenase 2 (mitochondrial) (MDHM 
(MDH2)), aldehyde dehydrogenase 1 family member B1 (ALD-
H1B1), aldehyde dehydrogenase 2 (mitochondrial) (ALDH2), and 
the mitochondrial nucleoside diphosphate kinase (NME4/NDKM). 
C1QBP is known to form high-stoichiometry complexes with 
MDH2 and ALDH2, stabilizing them at the inner membrane and 
increasing electron transfer efficiency to Complex I.50 Metabolomic 
analysis showed elevated malic and glyceric acid levels, consistent 
with enhanced activity of the malate–aspartate shuttle catalyzed by 
MDH2. Increased ITP and deoxyinosine further point to activation 
of the ATP-independent salvage pathway (via NME4), which is en-
ergetically advantageous under conditions of enhanced respiration. 

Fig. 6. Histogram of the distribution of regulatory influences on enzymes from lipid raft proteins. 
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In addition to purine metabolism, THz exposure also influenced 
pantothenate/CoA biosynthesis and the pentose phosphate pathway. 
Both pathways are closely linked to energy and redox regulation. 
Enhanced CoA biosynthesis may indicate an increased demand for 
acyl-group transfer and mitochondrial oxidation, while activation of 
the pentose phosphate pathway supplies NADPH for antioxidant de-
fense and anabolic reactions. Together, these alterations suggest that 
THz irradiation induces a coordinated metabolic response aimed at 
maintaining redox balance and energetic stability under non-thermal 
electromagnetic stimulation.

The receptor–ubiquitin ligase 5′-nucleotidase domain contain-
ing 2 (5NTD (NT5DC2)) reportedly proteolytically cleaves ec-
tonucleoside triphosphate diphosphohydrolase 1 (ENTP1) while 
simultaneously inhibiting guanine deaminase activity. This combi-
nation of effects explains the accumulation of ITP and the decrease 
in guanine.

The guanine nucleotide-binding protein, alpha stimulating ac-
tivity polypeptide 2 (GNAS2 (Gas)), and guanine nucleotide-bind-
ing protein, alpha q polypeptide (GNAQ (Gaq)) proteins receive 
the largest number of inputs from plasma membrane receptors in 
the gene network. Notably, p32 and Gα proteins colocalize within 
membrane domains, and their convergence during THz-induced 
raft rearrangement may activate two possible signaling cascades: 
(1) the cyclic adenosine monophosphate/protein kinase A signaling 
pathway (cAMP/PKA via Gas), leading to phosphorylation of the 
MDH2/ALDH2 complex; and (2) the phospholipase C–inositol tri-
sphosphate–calcium signaling pathway (PLC–IP3–Ca2+ via Gaq), 
causing activation of the mitochondrial calcium uniporter and an 
additional influx of NADH.51 Both cascades accelerate TCA cycle 
activity and explain the excess production of malic acid.

A study on the effect of THz radiation on the proteome of 
the thermophilic bacterium Geobacillus icigianus demonstrated 
changes in the expression of numerous proteins after 15 min of 
exposure to THz radiation generated by a free-electron laser.16 Al-
terations were observed in electron transport chain components, 
regulators of transcription, translation, DNA repair, cell growth, 
and chemotaxis, as well as in pathways of peptidoglycan synthe-
sis, riboflavin, NAD, FAD, and pyridoxal phosphate biosynthesis, 
TCA cycle metabolites, and ATP biosynthesis, indicating a rapid 
cellular response to THz radiation.

The gene network of cellular responses to THz radiation re-
vealed that epidermal growth factor receptor (EGFR) and a group 
of Gα subunits formed the densest cluster of interactions with en-
zymes processing guanine/adenine-containing metabolites. THz-
induced rearrangement of lipid rafts may have promoted ligand-
independent EGFR clustering, consistent with previous reports 
demonstrating that EGFR can undergo membrane-driven cluster-
ing and activation in response to non-chemical physical perturba-
tions, independent of ligand binding.52 In the network, EGFR was 
connected to APT, ALDH7A1, NT5D2, and GNAS2. These en-
zymes govern the terminal steps of IMP/XMP reutilization and the 
glycerol shunt; thus, their spatial proximity to EGFR provides the 
cell with a “short” metabolic loop for rapid replenishment of the 
nucleotide pool.

GNAI1, GNAQ, and GNAS-short isoform (GNAS2) were iden-
tified as high-degree nodes (11 to 29 receptors). Through these, 
receptors from adrenergic, purinergic, lysophosphatidic acid, and 
other families can transactivate EGFR (the so-called GPCR–RTK 
transactivation). The GNAS family elevates intracellular cAMP 
levels, and increased cAMP has already been shown to trigger ex-
pression of several salvage pathway enzymes (e.g., APRT, PNP).53 
In essence, Gα nodes act as a “gateway”: the higher the density 

of GPCR inputs, the stronger the shift from de novo synthesis to-
ward purine salvage, which in our experiments was reflected as in-
creased hypoxanthine, ITP, and deoxyinosine levels, accompanied 
by decreased adenine.

The most highly organized structures of the plasma membrane, 
as well as of mitochondria, are lipid rafts. Lipid rafts are dynamic 
nanoscale assemblies of sphingolipids, cholesterol, and proteins 
that can stabilize and coalesce into larger platforms.54 A key func-
tion of lipid rafts is signal transduction, particularly the regulation of 
metabolic processes. Albumin (regulator) inhibits the degradation of 
purine nucleoside phosphorylase (hereinafter referred to as PNPH), 
which catalyzes the phosphorolytic cleavage of the N-glycosidic 
bond in deoxyadenosine, a metabolite whose levels increased in the 
metabolomic profiles of cells exposed to THz laser irradiation.55 Ac-
cording to our calculations, the enzymes GNAS2 and MDHM are 
influenced by the largest number of corresponding lipid raft proteins 
through protein–protein interactions. THz-induced “compaction” 
of rafts increases the affinity of the ALBU→PNPH interaction and 
shifts the cell toward deoxyadenosine degradation.

The OBPs we identified are consistent with those reported by 
other authors studying the effects of THz radiation on cells. Expo-
sure to THz radiation at the molecular level can lead to changes 
in the regulation of chromatin organization, G protein–related 
signaling pathways, and post-translational modifications. In a 
study,6 THz radiation was shown to affect chromatin organization 
and gene expression in microbial and eukaryotic cells, suggest-
ing possible mechanisms of non-thermal action of THz radiation. 
Thus, THz radiation of appropriate intensity and frequency can in-
duce epigenetic changes such as histone modifications,56 altered 
binding conditions of methylated DNA, or DNA demethylation, 
ultimately leading to changes in gene expression and chromatin 
structure. This is particularly relevant to cancer therapy, where de-
methylation can be used to suppress oncogenes.57

A large body of research has focused on aberrant DNA meth-
ylation in melanoma.58,59 Melanoma is one of the most promising 
cancer types for biomedical applications of THz radiation in thera-
py due to the easy accessibility of malignant lesions. Manipulating 
DNA methylation to correct alterations in tumors may become an 
effective strategy for molecular cancer therapy.

THz radiation may also induce conformational changes in chro-
matin, influencing its compactness and accessibility for transcrip-
tion and DNA repair.6 In addition to van der Waals interactions, 
THz radiation can affect hydrogen bonds that stabilize chromatin 
structure, leading to either decondensation or condensation.60

The OBPs we identified are also consistent with the findings 
of a study, which reported that THz radiation can influence neu-
ronal morphology and dynamic properties, inducing nonlinear 
resonance effects in proteins that may, in turn, impact chromatin 
organization and signaling pathways.21

The results obtained show that both the gene network of en-
zyme regulation by cellular receptors and the network associated 
with lipid rafts include numerous OBPs. This indicates a complex 
interplay between these elements and their significance in cellu-
lar physiology. The identified processes may serve as a basis for 
further research in molecular biology and medicine. The study 
highlights the need for continued analysis of interactions between 
different signaling pathways and their impact on cellular functions.

Limitations
This study was performed using a single human melanoma cell 
line, SK-MEL-28, and therefore the observed effects may reflect 
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cell-type-specific responses. Further validation across additional 
cellular models and tissue systems is required to confirm the gen-
erality of the identified mechanisms. A commercial infrared lamp 
with predefined parameters was used as a control to exclude non-
specific thermal and THz-independent effects; the detected metab-
olites should not be considered markers of infrared exposure itself.

The present work focused exclusively on the cytoplasmic mem-
brane and its associated proteins, proposing a mechanistic link 
between THz-induced membrane perturbations, mitochondrial 
activity, and metabolic regulation. These interpretations represent 
a theoretical model based on metabolomic and network data and 
should be further tested experimentally. Future studies involving 
other THz frequencies, exposure regimes, and broader molecular 
targets will be essential to clarify the universality and biophysical 
basis of these proposed mechanisms.

Conclusions
Exposure of SK-MEL-28 melanoma cells to 2.3 THz radiation 
produces coordinated alterations in metabolic and regulatory net-
works without affecting cell viability. Metabolomic profiling re-
veals pronounced modulation of purine metabolism, pantothenate/
CoA biosynthesis, and the pentose phosphate pathway, while bio-
informatic analysis links these changes to processes of chromatin 
organization, G-protein–mediated signaling, and post-translational 
regulation. Gene network reconstruction indicates that lipid raft–
associated receptors and enzymes act as central mediators of these 
responses, suggesting that cellular membrane proteins may serve 
as sensitive interfaces for THz irradiation perception and transduc-
tion. The observed remodeling of nucleotide and energy metabo-
lism suggests an adaptive, non-thermal reprogramming of bio-
chemical pathways, enabling cells to maintain homeostasis under 
electromagnetic stimulation.
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